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ARTICLE

Leveraging the HapMap Correlation Structure in Association
Studies
Noah Zaitlen, Hyun Min Kang, Eleazar Eskin, and Eran Halperin

Recent high-throughput genotyping technologies, such as the Affymetrix 500k array and the Illumina HumanHap 550
beadchip, have driven down the costs of association studies and have enabled the measurement of single-nucleotide
polymorphism (SNP) allele frequency differences between case and control populations on a genomewide scale. A key
aspect in the efficiency of association studies is the notion of “indirect association,” where only a subset of SNPs are
collected to serve as proxies for the uncollected SNPs, taking advantage of the correlation structure between SNPs. Re-
cently, a new class of methods for indirect association, multimarker methods, has been proposed. Although the multi-
marker methods are a considerable advancement, current methods do not fully take advantage of the correlation structure
between SNPs and their multimarker proxies. In this article, we propose a novel multimarker indirect-association method,
WHAP, that is based on a weighted sum of the haplotype frequency differences. In contrast to traditional indirect-
association methods, we show analytically that there is a considerable gain in power achieved by our method compared
with both single-marker and multimarker tests, as well as traditional haplotype-based tests. Our results are supported by
empirical evaluation across the HapMap reference panel data sets, and a software implementation for the Affymetrix
500k and Illumina HumanHap 550 chips is available for download.
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Large-scale case-control association studies are a poten-
tially powerful tool for discovering the genetic basis of
human disease.1–3 Recent high-throughput genotyping
technologies, such as the Affymetrix 500k array and the
Illumina HumanHap 550 beadchip, have driven down the
costs of association studies and have allowed us to mea-
sure allele frequency differences between case and con-
trol populations on a genomewide scale.4,5 A key aspect
in the efficiency of association studies is the notion of
“indirect association.” By leveraging the linkage disequi-
librium (LD) structure of the genome, frequency differ-
ences between case and control populations do not need
to be measured in all SNPs but only in a subset, or a set
of tag SNPs that serve as proxies for the remaining un-
collected SNPs (we also refer to the uncollected SNPs as
“hidden SNPs”).6 A chromosome carrying a particular al-
lele of a tag SNP has a high probability of carrying a par-
ticular allele of a proximal hidden SNP. Thus, an allele
frequency difference in a hidden SNP will manifest itself
as an allele frequency difference in a tag SNP. This cor-
relation is often measured between two SNPs by the cor-
relation coefficient . The measure is widely used in the2 2r r
design and analysis of association studies, because the re-
lation between the power of detecting an association at
the hidden SNP and only observing the tag SNP has been
well understood for some time (e.g., see the work of Prit-
chard and Preworzski7 and Sham et al.8).

Tag SNPs are chosen by examining the LD structure of

a reference panel such as the HapMap,9 which is a data
set that contains a complete set of genotypes from 270
individuals, with 13.9 million SNPs across the genome.
Choosing a set of tag SNPs is a challenging problem, since
the LD structure is quite complex and varies through the
genome. To date, many tag SNP selection methods have
been proposed.10,11 These methods employ different sta-
tistical criteria, the most common being procurement of
a set of tag SNPs for which every hidden SNP is “covered”
by a tag SNP, such that the correlation coefficient be-2r
tween the two SNPs in the reference set is higher than a
certain threshold (e.g., see the work of Carlson et al.11).
These methods vary greatly in the optimization methods
used to obtain the tag SNPs.

Recently, a new class of methods—multimarker meth-
ods—has been proposed.10,12–14 These methods take ad-
vantage of the fact that some pairs (or groups) of SNPs
serve as better proxies for the hidden SNPs than does any
single SNP. Since multimarker proxies have more than two
possible alleles, the frequencies of a specific sequence of
alleles in these SNPs (i.e., a haplotype) are compared be-
tween the cases and the controls. Thus, a specific haplo-
type, instead of a single SNP, is used as a proxy for a hidden
SNP. It has been shown empirically that these methods
can reduce the number of tags required to achieve equiv-
alent power.10 In addition, it has been empirically shown
that even if the set of tag SNPs is fixed—such as in the
case where a commercial high-throughput genotype prod-
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Figure 1. A sample haplotype distribution for five SNPs, where
the first two SNPs are collected as tag SNPs, and the remaining
three SNPs are uncollected. Freq. p frequency.

uct is used—one can choose a set of multimarkers for each
hidden SNP and considerably increase the (and therefore2r
the power) between that proxy haplotype and the hidden
SNP.15

Although multimarker methods are a considerable ad-
vancement, current methods do not fully take advantage
of the correlation structure between SNPs and their mul-
timarker proxies. For example, consider the scenario given
in figure 1. In this example, we assume that the first two
SNPs are collected as tag SNPs for the association study
and will be used as proxies for the three remaining SNPs.
The third SNP is in perfect disequilibrium with the first
SNP ( ), and, thus, the first SNP serves as a perfect2r p 1
proxy for the third SNP. Since the fourth SNP is not in
perfect disequilibrium with either of the first two SNPs,
the haplotype AA at the first two SNPs can serve as a per-
fect proxy for the fourth SNP. The most interesting case
is the fifth SNP, for which no haplotype serves as a perfect
proxy. The best haplotype proxy for this SNP is the hap-
lotype AA, for which . However, by restricting2r p 0.619
ourselves to the haplotype AA, we ignore the additional
information given by the other haplotypes. For example,
the allele A in the fifth SNP occurs occasionally with hap-
lotype AG, but never with haplotypes GA or GG.

To take advantage of this additional information, we
propose a new statistic, the r test, and a new method,
WHAP, that is based on a weighted sum of all the hap-
lotype frequency differences. We show both empirically
and analytically that there is a considerable gain in power
achieved by this statistic, as opposed to a statistic on a2x

single SNP or group of haplotypes. We show that the r

test is distributed with 1 df, regardless of the weight2x

assignments. We then develop a notion equivalent to ,2r
defined by the haplotype weights and with values rang-2rh

ing from 0 to 1. Analogously to Pritchard and Preworzski,7

we show that, if a multimarker set has a correlation of
with a causal SNP, then using the r test with indi-2 2r n/rh h

viduals for this set is equivalent to directly testing the
causal SNP for association with n individuals. We show
analytically that the for a set of tag SNPs is always at2rh

least as large as the best for any single haplotype or2r
single SNP. Empirically, we observe that, in many cases,

is, in fact, quite larger than , which leads to a significant2 2r rh

increase in power. For instance, in the above example, the
correlation coefficient between the weighted average of
the haplotypes and the fifth SNP is 0.85, whereas it is only
0.619 for the best single haplotype. Finally, we show that
the r test is always more powerful than the standard 2x

test over a set of haplotypes. Our proposed method uses
a statistic similar to the one proposed in the works of
Nicolae16 and Stram.17

Previous approaches for tag SNPs, such as single-marker
and multimarker approaches involving one haplotype, fall
into our framework, since these can be seen as specific
assignments of weights to the haplotypes (i.e., letting the
weight of the haplotype be 1 and the weight of all the
other haplotypes be 0). We present a method to find the

optimal set of weights that maximizes the power of the r

statistic, and we show both analytically and empirically
that our method always performs at a power equal or
greater to standard multimarker methods. Furthermore,
we show that, asymptotically, one can gain power only
by using a larger number of SNPs as a proxy to the hidden
SNP. In practice, since sample size is limited, “overfitting”
effects may reduce power, and we therefore empirically
show that, for haplotypes of moderate length, there is an
increase in power. To the best of our knowledge, this is
the first rigorous analytical proof that demonstrates that
haplotype and multimarker indirect association is asymp-
totically more powerful than indirect association based on
single SNPs.

Our methods and power analysis relies on accurate hap-
lotype frequency estimates. Since the accuracy of haplo-
type frequency estimation depends on different factors,
such as the number of SNPs used, their physical locations,
and the LD structure, we evaluated our analytical results
via simulation. We first demonstrate that is always 12 2r rh

for both SNPs and multimarker tags over the marker sets
of the Affymetrix 500k and Illumina HumanHap 550
chips. In particular, moving from multimarker tags to our
WHAPs results in up to a 21.1% increase in the number
of captured common SNPs (minor-allele frequency [MAF]
�0.05 and or �0.8). Second, we simulate case-control2 2r rh

panels under various disease models and show that this
increase in utility corresponds, as expected, to an increase
in the power of our method compared with the use of
single SNPs and multimarker tags.

We calculated the optimal weights for every HapMap
phase II SNP, using the Affymetrix 500k and Illumina
HumanHap 550 SNP sets. These data are available on re-
quest, and the software for performing association tests
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that use WHAPs can be downloaded from the WHAP Web
site.

Material and Methods

The r test is a statistic that is applied to a set of WHAP tag SNPs
that are a proxy for the hidden SNP. It can be used in place of
the standard statistic applied to the tag SNPs. Informally, the2x

r test computes a weighted sum of all the tag SNP haplotype
frequency differences between the case and control samples. A
more formal description of the r test is given below.

In traditional multimarker methods, for a given hidden SNP, a
set of SNPs are chosen as tag SNPs, and a specific haplotype of
the tag SNPs is used as the proxy. In contrast, in the r test frame-
work, once the tag SNPs are chosen, a weight for each of the
haplotypes is determined. The specific values of the weights are
estimated from the reference panel (e.g., the HapMap data set)
and are recorded for each hidden SNP.

The r test is distributed with 1 df, and its power depends on2x

the correlation coefficient between the statistic and the hidden2rh

SNP (see below). We show that is analogous to in standard2 2r rh

association methods, in the sense that it provides a direct linear
relation to power.

We consider the setting in which an association study is per-
formed on N cases and N controls. We assume that the causal
SNP s is not genotyped but that a set of SNPs, § , inp {s , … ,s }1 m

LD with s are genotyped. For simplicity of presentation, we
assume that each of the SNPs is biallelic, with allele values 0
and 1. To distinguish the allelic notation of s from that of the
other SNPs, we assume that the alleles of s are C and c. Let

be the set of haplotypes over the set of SNPs §.mh , … ,h � {0,1}1 k

We suggest a statistical test, the r test, which is based on a convex
combination of the haplotype frequencies. This combination de-
pends on the joint distribution of the alleles c and C of s and the
haplotypes in the HapMap data.

Formally, let be a set of haplotype weights. Let�a p {a … ,a }1 k

and be the observed frequencies of haplotype h in the case1 0ˆ ˆp ph h

and control populations, respectively, and let . We0 1ˆ ˆ ˆp p (p � p )/2h h h

define the r statistic as

k
1 0 2ˆ ˆN[ � a (p � p )]h h h

hp1�r(a) p .2 2ˆ ˆ2[�a p � (�a p ) ]h h h h
h h

Under the null hypothesis, is distributed as with 1 df—that2�r(a) x

is, the square of a standard normal distribution. With and0 1p ph h

denoting the true frequency of haplotype h in the case and con-
trol populations, respectively, under the alternate hypothesis,

is distributed as the square of a normal distribution with�r(a)
mean

k
1 0�N � a (p � p )h h h

hp1
l p ,h

2 2��2 �a p � (�a p )h h h h
h h

where the variance is ∼1, with the assumption that and1 0p ≈ ph h

that . Thus, the power of the statistic depends0 1 �p p (p � p )/2 r(a)h h h

on the frequencies and and on the weight vector .0 1 �p p ah h

To evaluate the statistical power of the statistic, we are�r(a)
interested in comparing its power with the power of detecting
association directly with the causal SNP s by the test. Let2 1ˆx pC

and be the observed frequencies of allele C at SNP s in the case0p̂C

and control populations, respectively, assuming that we directly
genotype the SNP. The statistic can be written as2x

1 0 2ˆ ˆN(p � p )C CX p .
2p (1 � p )C C

Similar to the statistic, under the null hypothesis, X is dis-�r(a)
tributed as the square of a standard normal distribution. With
the true SNP frequencies denoted as and , and if0 1p p p pC C C

, X is distributed under the alternative hypothesis as0 1(p � p )/2C C

the square of a normal distribution with mean

1 0�N(p � p )C C
l pc � �2 p (1 � p )C C

and variance ∼1, with the assumption that . The relation0 1p ≈ pC C

between and determines the relation between the power ofl lh c

and X.�r(a)
The underlying assumption in any indirect-association method

is that the correlation structures of the cases and the controls are
similar, as long as the two groups are sampled from the same
underlying population. For instance, the underlying correlation
structure is assumed to be similar to the closest HapMap popu-
lation; therefore, the set of tag SNPs and the expected power of
these SNPs to detect association can be estimated from the
HapMap data set. More formally, we assume that the conditional
probability (or ) of haplotype h given C (or c) is the sameq qhC hc

in the case and control populations. If the cases and controls are
sampled from a population that is similar to one of the HapMap
populations, these conditional probabilities can be estimated
from the HapMap quite efficiently, as we show in the “Estimating
the Values ” subsection.�qCh

Under these assumptions, we have

1 0�N�a (p � p )h h h
h

l ph
2 2��2 �a p � (�a p )h h h h

h h

1 0�N(p � p )�a (q � q )C C h hC hc
hp

2 2��2 �a p � (�a p )h h h h
h h

1 0�N(p � p )�a (q � q ) �p (1 � p )C C h hC hc C Chp # �2 2 p (1 � p )� C C�2 �a p � (�a p )h h h h
h h

1 0 ��a (q � q ) p (1 � p )�N(p � p ) h hC hc C CC C hp # p l r ,c a�� � 2 22 p (1 � p ) �C C �a p � (�a p )h h h h
h h

where

�� a (q � q ) p (1 � p )h hC hc C Ch
r p .a� 2 2�� a p � (� a p )h h h hh h

Thus, the power of detecting the causal SNP with a sample size
of N individuals (with use of the statistic) is the same as the2x

power of detecting the causal SNP with individuals with′ 2N p N/ra�
use of the statistic. When the indirect-association method is�r(a)
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performed on one SNP (i.e., ), is , regardless of the2�m p 1 r ra�
weight vector . Thus, can be seen as a natural generalization2�a ra�
to the standard notion of the measure of LD.2r

Finding the Best Weight Vector

Clearly, it is desirable to perform the test with a weight vector�r(a)
that maximizes . We now show that is maximized when2�a r ra a� �
is the conditional probability of C given h (denoted as ).a qh Ch

That is, we show the following theorem.
Theorem 1: The power of the statistic is maximized when,�r(a)

for each haplotype h, .a p qh Ch

PROOF: As shown above, the power of the test is directly�r(a)
determined by the value of . We set2ra�

a p a q�C h hC
h

and

a p a q .�c h hc
h

With these notations, the numerator can be written as (a �C

. If one assumes that for the optimal solution�a ) p (1 � p )c C C

(otherwise, the optimum is zero, and then any vector �a ( a aC c

will satisfy that ), it can be easily verified that, without lossr p 0a�
of generality, we can arbitrarily choose the values of and ,a aC c

as long as they are nonnegative numbers. The latter follows from
the fact that, if maximizes , then so does and for2� � �a r ba a � ba�
every constant b. We thus set these values to satisfy a pC

and .� q q a p � q qCh hC c Ch hch h

The second term of the denominator can be written as

a p p a (q p � q p )� �h h h hC C hc c
h

p p a � p a .C C c c

At the same time, by the Cauchy-Schwartz inequality,

2q 2hC2 2a p # � a q p a ,� � �h h h hC C( )ph h hh

where equality holds if there is a constant b, such that

q qhC Cha p b p bh p ph C

for every haplotype h. By adding the definition of and , wea aC c

can satisfy this equality by setting . Put differently, theb p pC

denominator is minimized when for every h. Since thea p qh Ch

numerator is now constant, the vector maximizes the� �a p qh Ch

value of .ra�

Note that, for the optimal selection of —that is, when�a a ph

—we observe thatqCh

2�q (q � q ) p (1 � p )[ ]Ch hC hc C C
h

2r pa 2 2� �q p � (�q p )Ch h Ch h
h h

2 22 2p p 2Ch Ch� � p �p � � pC Ch C( ) ( )p ph hh h h
p p 222 p 2ChpCh p (1 � p ) � � pp (1 � p ) � � �p C C C( )p[ ( ) ] hC C Chph hh h

2p 2Ch� � p �q (p � p p )C Ch Ch C hphh hp p .
p (1 � p ) p (1 � p )C C C C

We denote, by

� q (p � p p )Ch Ch C hh
2r p ,h p (1 � p )C C

the correlation coefficient between the haplotype distribution of
and the causal SNP. It is easy to see that and2{h , … ,h } 0 � r � 11 k h

that is always larger than the coefficient between any group2 2r rh

of haplotypes and the causal SNP; in particular, it is larger than
the coefficient between any single tag SNP and the causal SNP.2r
Furthermore, when the number of SNPs used for the r test in-
creases (i.e., m increases), the power of the association increases.
To see this, consider the original haplotypes and the{h , … ,h }1 k

haplotypes that are formed by adding one′ ′′ ′ ′′ ′ ′′{h ,h ,h ,h , … ,h ,h }1 1 2 2 k k

more SNP. By definition, , and .p p p � p p p p � p′ ′ ′ ′ ′ ′Ch Ch Ch h h hi i i i i i

Therefore, the increases by2rh

2 2 2p p p′ ′′Ch Ch Ch� � �′ ′′2[( ) ]h p p ph h h
� 0 ,

p (1 � p )C C

where the latter is true since for every2 2 2(a � b) /(c � d) � a /c � b /d
four numbers a, b, c, and d 1 0. Thus, increasing the number of
SNPs can only amplify the power of detecting association with a
hidden SNP. In practice, this is not exactly true, since the errors
in the haplotype frequency estimates increase when the number
of SNPs increases, and so does the effect of overfitting.

The r Test Compared with the Test2x

Since is larger than the maximal over all groups of haplotypes,2 2r rh

we observe that the r test has more power than the test with2x

1 df applied to any single haplotype. A natural question is
whether the r test is more powerful than the test with2x k � 1
df when both statistics are applied to the set of haplotypes. This
statistic can be written as

0 1 2n (p � p )h hX p .�k 2 ph h
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It is well known that, for the null distribution, is distributedXk

as with df. Now, we can write2x k � 1

0 0 0p p p q � (1 � p )qh C hC C hc

p phC hc0 0p p � (1 � p )C Cp 1 � pC C

p � p p phC h C hc0p p � .C p (1 � p ) 1 � pC C C

Therefore,

2(p � p p )hC h C0 1 2 0 1 2(p � p ) p (p � p ) .h h C C 2 2p (1 � p )C C

Thus, we observe that

0 1 2n (p � p )h hX p �k 2 ph h

0 1 2 2n (p � p ) 1 (p � p p )C C Ch C h 2p # p Xr .� h2 p (1 � p ) p (1 � p ) phC C C C h

The last equality holds, since

�q (p � p p ) 2Ch Ch C h 1 ph Ch2 2r p p # � p ,�h C( )p (1 � p ) P (1 � p ) phC C C C h

and, on the other hand,

2 2(p � p p ) pCh C h Ch 2p � p .� � Cp ph hh h

Under the alternative hypothesis, is distributed with mean2X xk k�1

, whereas the r test is distributed with mean . Therefore,2l x lh 1 h

one gains more power by using the r test. We note that this
conclusion is valid under the assumptions made in this analysis
and, in particular, under the assumption that, in the studied re-
gion, the disease is affected by one causal SNP. However, there
are scenarios in which the statistic has more power than theXk

r test—for instance, when each of the different haplotypes affects
the disease independently.

Estimating the Values �qCh

Because Theorem 1 shows that the vector , which maximizes�a
the power of the r test, is , we are interested in estimating the�qCh

values from the HapMap population closest to the case andqCh

control populations.
To do so, we first estimate the haplotype frequencies over the

set of SNPs s, . The haplotype frequencies in a populations , … ,s1 m

can potentially be estimated by different methods, such as ex-
pectation maximization (EM)18 or PHASE.19 For our needs, we use
HaploFreq,20 which is based on a likelihood model similar to the
one used in the EM algorithm but which is probably more effi-
cient and empirically more accurate than that in the EM algo-
rithm. In particular, when whole-genome association studies are
being performed, the efficiency of these algorithms is crucial,
since every hidden SNP s requires a new calculation of the hap-
lotype frequencies in the HapMap population.

Given the haplotype distribution over the entire set of SNPs,
it is easy to calculate the values by settingq q pp /(p �Ch Ch Ch Ch

. Since the frequencies and are given by HaploFreq, wep ) p pch Ch ch

are able to calculate .qCh

Results
Benchmarks over HapMap ENCODE Regions

To evaluate the relative utility of our r test in comparison
with single-SNP and multimarker methods, we performed
several benchmarks, using the HapMap reference samples
over the ENCODE regions. These data, from 270 individ-
uals from four populations (people of European ancestry
[CEU], Yoruba of Ibadan, Nigeria [YRI], Han Chinese
[CHB], and Japanese [JPT]) are made up of polymorphisms
over 10 genomic regions spanning a total 5 Mb of se-
quence. These regions have been carefully studied and are
believed to have complete ascertainment for SNPs with
frequency 15%. They are commonly used to estimate the
performance of association statistics, since there are still
many ungenotyped and unknown common SNPs in the
rest of the genome.

In a typical association study, there is a set of marker
SNPs (tag SNPs) that are genotyped and a set of SNPs that
are not observed (hidden SNPs). To replicate this scenario,
we used the intersection of SNPs from current genotyping
platforms and SNPs from each of the ENCODE regions as
our marker sets. Following the example of others,10,15 we
measured the correlation between each SNP in the EN-
CODE regions with the best marker for the SNP from sin-
gle tag SNPs (denoted as SNPs), multimarker tags (denoted
as HAPs), and our WHAPs. We used the correlation co-
efficient and where appropriate, as measures of the2 2r rh

utility of the various methods. Sets with a higher corre-
lation have a greater potential power, since they are stron-
ger proxies for the uncollected SNPs in the region.

The HAP and WHAP tags were selected by finding the
strongest proxy via enumeration over all possible sets of
two, three, and four tag SNPs within 100 kb of each SNP
in every ENCODE region. We limited the tag length to
four, to prevent overfitting (for a further examination of
the issue of overfitting, see the “Robustness to Overfitting”
subsection). We used two sets of tag SNPs for each EN-
CODE region: the SNPs contained in the Affymetrix 500k
set and the SNPs contained in the Illumina HumanHap
550 set.

We compared the correlation coefficient of the WHAPs
used for the r test with the correlation coefficient of a
single SNP and a single HAP. Since the effective sample
size is linearly related to the correlation coefficient, we
measured the fraction of common SNPs (MAF �5%) cap-
tured with a correlation coefficient larger than a given
threshold, for a range of thresholds. Figure 2 demonstrates
this performance evaluation over the sets of tag SNPs and
the four HapMap populations. The figure demonstrates
that the r test outperforms each of the other methods, in
terms of correlation. Indeed, the r test has significantly
higher correlation for every population on every platform
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Figure 2. Fraction of SNPs captured by each of the methods
tested on the Affymetrix 500k and Illumina HumanHap 550 marker
sets. Shown is the fraction of SNPs with MAF �5% that are captured
by a marker SNP, HAP, or WHAP. The notion of a hidden SNP being
captured depends on the between the proxy and the SNP. For2r
each graph, the X-axis represents the threshold, and the Y-axis2r
represents the fraction of common SNPs with greater than the2r
threshold. The three lines correspond to single SNPs, HAPs, and
WHAPs. The populations are the four ENCODE panels: CEU, YRI,
CHB, and JPT. Evidently, WHAPs significantly outperform both SNPs
and HAPs over any platform and population but do especially well
in populations with more-complex LD structure, such as YRI.

Table 1. Fraction of SNPs Captured by Each of the
Methods

Tag Set and
Population

Fraction of
SNPsa for

Increaseb

(%)SNP HAP WHAP

Affymetrix 500k:
CEU .61 .77 .84 8.52
CHB .62 .76 .83 8.95
JPT .59 .73 .81 11.67
YRI .37 .61 .74 21.06

Illumina HumanHap 550:
CEU .88 .97 .98 1.60
CHB .80 .91 .94 3.49
JPT .78 .90 .95 4.48
YRI .52 .83 .92 10.63

NOTE.—The highest fraction captured for each tag set and
population is shown in bold type.

a Fraction of common SNPs (MAF �0.05) captured with
for each genotyping platform and population used in2r � 0.8

this study, with tags up to four SNPs in length. For each hidden
SNP, the four tag SNPs were chosen from among all possible
quartets of SNPs within 100 kb from the SNP.

b Percentage increase in the fraction of captured SNPs when
moving from HAPs to WHAPs. For example, the first row shows
that, in the CEU population over the Affymetrix 500k chip,
HAPs capture 77% of SNPs, whereas WHAPs capture 84% of the
SNPs. This is an 8.52% increase in the number of captured
SNPs. We prove that WHAPs always perform at least as well as
HAPs in the “Material and Methods” section.

at all thresholds. This is especially pronounced in popu-
lations with complex LD structure (e.g., YRI). Although
the improvement shown by our simulations is only a mod-
est one, we expect it to be more noticeable when haplo-
types of more than four SNPs are used. As discussed below,
this is currently prohibited because of the effects of ov-
erfitting, but larger reference data sets may allow such
improvements in the future.

We explore the difference between HAPs and WHAPs
by examining their relative increase in performance over
single SNPs. We observe that both WHAPs and HAPs are

significantly stronger proxies than SNPs. To elucidate their
differences, tables 1 and 2 present the fraction of common
SNPs captured with correlation coefficient �0.8 and the
average correlation coefficient. Evidently, the WHAPs are
a much better proxy for the hidden SNPs than is the best
HAP or the best tag SNP. In fact, we observe that the r test
increases the correlation relative to the best HAP or SNP
for 50.4% of the SNPs. In figure 3, we outline the distri-
bution of weights for tags of these SNPs. Unfortunately,
even though, in the majority of cases, the WHAPs serve
as a better proxy than the best HAP or SNP, the average
increase in is modest, since the increase is 10.1 for 18.1%2r
of the SNPs.

Power Evaluation

Although correlation is important in determining the
power of a method, other factors—such as frequency of a
causal SNP, number of individuals, disease model, preva-
lence, relative risk, and multiple hypothesis correction—
contribute to the overall power. To measure the increase
in power in practice, we used the complete phased data
for the ENCODE regions from the National Center for
Biotechnology Information,21 to simulate panels of 1,000
cases and 1,000 controls with a disease prevalence of 0.01
and relative risk of 1.5. For each SNP with MAF �0.05, we
generated a panel in which the SNP is assumed to be the
causal SNP. The total number of such panels was 32,017,
corresponding to the number of SNPs with MAF �0.05.
We evaluated each statistic for these panels, using the tag
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Table 2. Average Obtained by the Different2r
Methods

Tag Set and
Population

Average r2 fora

Increaseb

(%)SNP HAP WHAP

Affymetrix 500k:
CEU .77 .87 .91 4.37
CHB .75 .86 .91 4.96
JPT .74 .85 .90 5.88
YRI .59 .79 .87 9.17

Illumina HumanHap 550:
CEU .92 .97 .99 1.26
CHB .86 .95 .97 2.42
JPT .86 .94 .97 2.77
YRI .71 .91 .96 4.84

NOTE.—The highest average correlation coefficient for each
tag set and population is shown in bold type.

a Average correlation coefficient for each genotyping plat-
form and population used in this study with tags of up to four
SNPs in length.

b Percentage increase in the average correlation coefficient
when moving from HAPs to WHAPs.

Figure 3. Histogram of the distribution of haplotype weights for
SNPs, in which WHAPs provide a better proxy than a single HAP
or a single SNP. The weight distribution was generated from the
CEU population over ENCODE region ENm010.

SNPs from the Affymetrix 500k and Illumina HumanHap
550 SNP sets in each region. For the HAP and WHAP tests,
for every hidden SNP in the region, we found the tags
with maximum correlation to that SNP by enumerating
over all possible subsets of SNPs within a window of 100
kb. We estimated P values, using a permutation test with
10,000 permutations to correct for multiple hypotheses.
We consider a causal SNP as “identified” if its P value
adjusted for multiple hypotheses is !.01. Table 3 presents
the results of these power simulations. To illustrate the
difference between the multimarker method and our
WHAP method, the table presents the average relative
power taken over all 10 ENCODE regions when compared
with the ideal baseline situation in which we genotype
every SNP. Comparing the power of these methods with
the power of genotyping every SNP helps remove bias
caused by factors such as differing MAFs, which are in-
dependent of the correlation coefficient. As expected from
the results of the correlation coefficient experiment, we
observe that our method outperforms the HAP method.

Robustness to Overfitting

Our method is based on the assumption that the LD struc-
ture is consistent between the reference and case and con-
trol panels. There are several reasons why this may not
be the case, and they have the potential of limiting the
power of our method. First, it is not clear a priori whether
the weights estimated from one population apply to an-
other. To simulate discrepancies between the HapMap
population and the case and control populations, we used
the CHB genotype data to choose the best tags and to
estimate the weights of haplotypes while measuring the
power (using the r test) over simulations generated using
the JPT population. For every hidden SNP in the region,
we found the tags with maximum correlation to that SNP
by enumerating over all possible subsets of SNPs within

a window of 40 kb in the CHB population. With the Af-
fymetrix 500k tags, the power of simulations that used the
JPT population was 74%, 76%, and 78% for the best SNPs,
HAPs, and WHAPs, respectively, obtained from the CHB
population. With the Illumina HumanHap 550 tags, the
power of simulations using the JPT population was 83%,
88%, and 89% for the best SNPs, HAPs, and WHAPs, re-
spectively. Evidently, our method is not affected consid-
erably by the difference in the population structure be-
tween the reference data set and the case and control
populations.

Another complication may be the limited data size of
the HapMap populations. Since the HapMap population
is limited in size, there is the risk that the weights do not
represent the true population haplotype frequencies but
might instead be an artifact of overfitting. To measure the
effect of overfitting on our results, we reestimated the hap-
lotype frequencies, using only half the individuals in the
HapMap panels, and then measured the power on the rest
of the individuals with weights derived from the first half.
As shown in table 3, these two error sources do not seem
to considerably affect our method. If there was significant
overfitting, we would expect power to drop significantly.

In addition, if there was significant overfitting, we
would expect spurious correlation (high values) between2rh

WHAPs and hidden SNPs because of the limited size of
the HapMap populations. We measure the amount of spu-
rious correlation by considering tag SNPs from all EN-
CODE regions as proxies for a random set of hidden SNPs
from an ENCODE region on another chromosome. For
each of the hidden SNPs, we found the best pair, triplet,
and quartet of tag SNPs from other ENCODE regions and
the corresponding haplotype weights. In all cases, no set
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Table 3. Power Simulations

Tag Set and
Populationa

Powerb of

SNP HAP WHAP

Affymetrix 500k:
CEU .92 .94 .96
CHB .90 .94 .95
JPT .90 .93 .95
YRI .77 .88 .92
CEUh .92 .93 .94
CHBh .90 .91 .91
JPTh .89 .91 .92
YRIh .77 .87 .90

Illumina HumanHap550:
CEU .98 .98 .99
CHB .95 .97 .98
JPT .96 .97 .99
YRI .86 .95 .96
CEUh .96 .97 .98
JPTh .96 .96 .96
CHBh .95 .96 .96
YRIh .87 .95 .95

a For populations ending in “h,” haplotype
weights were estimated using only half the in-
dividuals from the HapMap reference panel data,
and power was measured using simulations over
the other half.

b Power of HAP and WHAP tests relative to ge-
notyping all SNPs, averaging over all 10 ENCODE
regions in simulated case-control studies of 1,000
cases and 1,000 controls. A relative risk of 1.5 is
assumed.

of tag SNPs achieved an , and the vast majority had2r 1 0.5h

very low , which is evidence that our results are not due2rh

to overfitting.

Discussion

and the r test can be used as a natural criterion for tag2rh

SNP selection, according to a similar argument for which
is currently used for tag SNP selection methods. Here,2r

in contrast to previous methods, we suggest that the LD
between a specific haplotype and the causal SNP not be
used but that the LD between a weighted combination of
the haplotype and the SNP be used instead.

In particular, our method has some similarities with the
method proposed by Stram,17 in which the expectation of
the hidden SNP is obtained from the haplotype frequen-
cies with a block, and by Nicolae,16 who suggested a test
similar to the r test. However, our approach differs from
the methods presented by Stram,17,22 because we do not
rely on haplotype blocks and instead use the multimarker
tags that maximize the power of the indirect association
(according to our analytic predictions), regardless of their
location. Our approach also differs from the approach pre-
sented by Nicolae,16 since we formulate a much broader
set of tests and show analytically that the maximum
power is attained for the r test. Furthermore, our method
for finding the set of WHAPs for every hidden SNP differs
from the one suggested by Nicolae,16 and we show that

this method is robust to overfitting and increases the
power under simulations of association studies.

In this article, we focused on the optimization of hap-
lotype-based tests for association studies when the set of
genotyped SNPs (tag SNPs) is fixed. In cases where the tag
SNPs are not fixed, it is also of interest to find a set of tag
SNPs that will maximize the power of the study when the
genotyping is followed by the haplotype analysis sug-
gested here. The design of such a tag SNP selection al-
gorithm is beyond the scope of this article, although it is
likely that a greedy method, such as the one used for Tag-
ger,10 would be a reasonable strategy to find such a set of
SNPs. The software for performing association tests that
use WHAPs can be downloaded from the WHAP Web site.
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